Exploring Innovation in Education and Research ©ICEER-2005

Tainan, Taiwan, 1-5 March 2005

A General Framework for Web Services and
Grid-Based Technologies for Online Laboratories

H. Saliah-Hassan& D. Benslimané, |. De La Teja’,
B. Fattouh®, L.K. Do®, G. Paquetté, M. Saad, L. Villardier 8, Y. Yan®

saliah@telug.uquebec.ca; djamal.benslimane@iuta.unilyonl.fr,
idelatej@licef.telug.uquebec.ca, [kimdo@telug.uquedc.ca;
bfattouh@licef.telug.uquebec.ca; Maarouf.Saad@etsrhta;
Louis_Villardier@telug.uquebec.ca, Yuhong.yan@nrgc.ca

Télé-université~>>® Montreal, Canada
LICEF/CIRTA ' Montreal, Canada,

Ecole de Technologie de I''nformatiof,, Montreal, Canada,
Ecole de Technologie de SupérieufeMontreal, Canada,
Université Claude Bernard Lyor12, Lyon, France,
NRC-IIT °, Fredericton, Canada

ABSTRACT: The combination of Web Services and grid-computing technologies isnttyrad a major
scientific revolution. It combines the middleware solution from V8ebvices and resource-sharing solutions
of grid computing. We present a general framework based on Web éearid grid-based technologies for
online laboratories. It is a distributed system model where cotqnahresources and experimental devices
throughout the networks are organized into federations. The benetiiis oiodel are information processing
capacity increase and resource sharing. We discuss a numbarroéaé considerations using this framework.
These include: the descriptions of tele-experimentation resouhmesyrapping of instruments into a web
service; the composition of Web Services, which is modeled asnaipdaproblem, and; the design of an
online laboratory brokerage system, which we dealt with in a foartele. We also discuss some issues
related to business logic and policy in a particular sector, Sutgiealearning and network-supported research

via information technologies.

INTRODUCTION

Online Laboratory is a typical distributed applioat The next
generation of the online laboratory system will lggyond the
current client/server architecture to grid-basedhiéecture. The
components for an online laboratory (instrumentssting
devices, or one entire experiment) can be scatteved the
Internet as individual web services. The onlineotalory
system is able to discover these web services aadhem in
one experiment. This is seamless to the usersirthiby would
not notice that the instruments and devices anmm fdifferent
physical locations. The Internet is a bus conngctifi these
services. Service providers can charge for servimesided
based on individual user requests.

The enabling technologies for building such a iisted
environment come from two domains: the Grid Tecbggland
the Web Services [1][2]. Grid Technology focuses using
distributed heterogenous resources to solve
computational problems. Grid Technology sees thddaxfoom
the resources point of view. It has specificatifmsresource
management, such as descriptions of resource piepend
performance. Scheduling and clustering are stutbednsure
the computational performance of the grid. Web isesssee

the world from a service point of view. The sergicare
provided by software components over the interrgte
services are invoked by sending XML-based SOAP ages$o

the remote components. Web services rely on interne
protocols, such as HTTP, BEEP and XML technology to
ensure the interoperability of the components offierint
platforms and are implemented in different prograngm
languages. W3C accepts the following standards:pl&im
Object Access Protocol (SOAP), a message-based
communication for component interaction [3]; Webn&=e
Description Language (WSDL), component interfacénien

[4], and; Universal Description, Discovery Integoat (UDDI),
service discovery and integration [5]. Grid Sersicare the
combination of Web Services and grid technology76]Grid
Services still work on the computational problerasg widely
accepted Web Services protocols as the transpget.|dhe
resources in Grid Services have a Web Servicesfact in
WSDL. The coming Web Service Resource Framework

massivé WSRF) will unify the Grid Services and Web Sergic&/SRF

fills out the Web services stack to be consisteith wthe Open
Grid Services Infrastructurésee next section). We expect that,
in the future, the individual Web Services will leathe
properties of the current Grid Services.

For online experiments, we have computational tasid data
sharing tasks, as well as the tasks to use theicesnof
instruments or devices. Thus we deal with high qrem&nce
issues as well as service composition issues.isnpidgper, we
will present a general framework of an online latory system
based on the current specifications of web servases grid
services. We analyse the special requirementgdafidual web
services for this application and present our smhstto meet
these requirements. We also present a solution Vitab

Services composition based on Artificial Intelligen (Al)

planning technology.

This paper is organized as following: Section &cdsses what
the Grid Services and Web Services can provide riine
experiment environment; Section 3 presents the rgéne
framework; Section 4 designs the web services ristrument
services; Section 5 presents the web services cstigro
solution; Section 6 describes a demo system, aadtidh 7
concludes the paper.

WHY USE GRID SERVICES AND WEB SERVICES FOR
ONLINE EXPERIMENT SYSTEMS

The enabling technologies for building an onlingpenkment
system come from two domains: the Grid Technology the
Web Services. Grid Technology focuses on usingildiged
heterogenous resources to solve massive compuhtion
problems. Grid Technology sees the world from #sources
point of view. It has specifications for resourcarmagement,
such as descriptions of resource properties antbrpgnce
[8]. It uses scheduling and clustering functionsetesure the
computational performance of the grid.

Web Services see the world from a service pointi@iv. The
services are provided by the software components thve
internet. It uses internet protocols, such as HTBEEP and
XML technology to ensure the interoperability ofeth
components on different platforms and is implemgnie
different programming languages. The componentsSGAP
message-based communication to talk to each a3heW{SDL

is used to define the interfaces of the compongitdJDDI is
used for service discovery and integration [5]. Afl these
specifications are W3C standards and are widelpaued by
industrial companies, such as IBM, Microsoft andAB&nd
others. Compared with the preceding middleware rieiciyy,
Web Services are more interoperable and accessilfie.
development and deployment complexity are greatiuced.
Therefore, Web Services are becoming a widely aedep
technology.

Grid Services were presented by lan Foster in 46{[3]. It
proposes to use the Grid technology to manage messwand
computational issues, and to use Web Serviceh@solution
of middleware. It aims to take the advantages othbo
technologies. The resources are wrapped as Wehic&grv
Open Grid Service Architecture (OGSA) [6] proposesuse
GWSDL (Grid WSDL) to describe the interface of tteenote
operations. GWSDL extends WSDL by defining some
portTypes (a WSDL tag for remote port) designed Gid
Services, e.g. GridServices and NotificationSowand more.
GWSDL also defines Service Data Elements, such a
Systeminfo (#CPU, system load, CPUBrand), and lLesiRs

(Internal values). OGSA proposes functions such as
Notification Service, Transient Service, Loggingifetycle
Management, and Security. These services are ribeiWeb
Service specifications. Grid Services uselex Serverfor
service discovery. Its function is similar to UDBérver, but it
uses different properties to describe a service.

Grid Services and Web Services will converge whenweb
Services Resource FramewoWSRF) is released at the
beginning of 2005 [9]. WSRF definasfamily of specifications
for accessing stateful (i.e. maintain state infdroma between
message calls) resources using Web Services.litdes the WS-
ResourceProperties, WS-ResourcelLifetime, WS-Badesi-aand
WS-ServiceGroup specifications. The motivation fbese new
specifications is that, while Web Service implenagions
typically do not maintain state information durintheir
interactions, their interfaces must frequently wlidor the
manipulation of state, that is, data values thasipeacross and
evolve as a result of Web Service interactions. W8S out the
Web Services stack to be consistent with the Oped Services
Infrastructure.

For online experiments, we have computational tasid data
sharing tasks, as well as tasks to use the sergfdestruments
or devices. Thus we deal with high performanceeissas well
as service composition issues. The Grid Services balutions
to computational resources management and datsférang.
The Web Services have the solutions to servicegtation and
composition. In our proposed framework, we will losth.

We notice that this is a rapidly changing domaihe Trend is
to merge the Grid Services and Web Services. Aseegbice is
going to have the properties of the computatiomslources
when it wraps a computational resource. When WSRF use
in 2005, we will see this more clearly. Currentlgur
framework considers the specifications from botle tBrid
Services and Web Services. We expect in the nearefuhat
the gap between the two domains will disappear.

THE GENERAL FRAMEWORK FOR ONLINE
EXPERIMENT SYSTEM USING GRID SERVICES AND
WEB SERVICES

An online laboratory system uses the scattered computational
resources and instrument services on the networks f
experiments. The online laboratory system we presere is a
web enabled distributed systelhhas two meanings: the user
accesses the online laboratory system via webfaar the
heterogenous resources and devices interoperate esith
other via Web services standards. The goals offithisework
are: 1) sharing the experimental resources amdfeyetit labs
via the Internet; 2) increasing the ability of cartggion and
sharing data among different labs, and; 3) enablisgrs to
access online labs any time and from anywhere.

Figurel is the distributed system architecture.frieeit end is
web-based, i.e. a web server is used to rendeBltHanterface
(see the next section). Its backend has the fumctio manage
the students and manage the experiments. Most fenply;, the
backend can use scattered resources on the Intemeine
experiment. For example, it can use instruments dadces

s1‘rom different online laboratories for one expenmneand it can

use heterogenous computational resources to prolcessata
generated from the experiment.

Web services serve as the transport layer of theesy The
computational resources and the instrument serviaes
wrapped by WSDL. So we just use “web services’dlbkinds

of resources and services. SOAP messages areosenbke a
service. These protocols are widely accepted bjerdifit

operation system and implemented by different mogning

languages. Therefore, the interoperability is esduifo make
the system work, a service provider first registegservice in
a registry server (step 1 in figure 1). Web seiwiose UDDI

server, while Grid Services use Index Server. Wgeek the
two standards will be merged. Otherwise, our systeith

accept both standards. A service requestor seaticheegistry
server and gets all the potential resources. éictelthe proper
services based on its own criteria (step 2). Thevice

requestor sends SOAP messages directly to theceguravider
to invoke the remote service (step 3).

Registry Server

DA™
1}

Web
Server

Online Lab
System

3

Fig 1. The distributed system framework
for online experiments
The user uses a web browser to connect to theeolalin
system. The online lab system uses remote servassd
on web services technology. The online lab ande¢h®te
services use WSDL to describe the operationalfates.

The architecture for the online experiment systershiown in
Figure 2. The block below the “hosting environmeigt”the
online laboratory system. It uses a web servettferfront end
representation. The back end has three layerstafhtayer is
the logic layer, where the learning scenarios afeneld and the
processes are managed. The learning scenariosefined in
four aspects [10]: learning objects, a pedagogmatlel, a
media model and distribution. Among those, the gedeal
model defines the process of a course. The prosésmslated
directly into Business Process Execution LanguaBeE()
[11]. The BEPL engine is a tool to monitor and control the
process automatically. The BEPL engine is able
automatically invoke remote web services. The &mi/in a
learning scenario may need remote web services.Sehéce
Broker determines if the services come from local ses/ieeg.
the blocks under theLAN"), or remote external services (e.qg.
the blocks of jini service$, “web servicey. Service Broker
knows the different protocols the remote services &or Grid
services, it sends the requests to the GSH/GSRI (&sivice
Handler/Grid Service References) in tl@arid Container.
GSH/GSR is a mechanism in Grid Service to get éfierence
of the remote objects and forward the requesthi¢orémote

t

objects. GSH/GSR is able to invoke the servicekeeiin
middleware, (e.g. jini), or in web services. Seevigroker can
also invoke web services without the GSH/GSR iat=fby
sending the request to the service objects in p@ication
server (the bottom layer). Service Broker regulardils the
Service Lookup (“srv lookup in Figure 2) and updates the
local LDAP with the results. Registration Manager
(“Registration Mrg in Figure 2) helps to convert information
from a service registry into LDAP. The bottom layisrthe
Application Server layer. The Application Server provides
flexible mechanisms to manage tHgervice Objects and
interface to théVeb Service Engine. Service Objects are some
software components that process the data from teemveb
services. See the next section for one exampleeofice
implementation. The Web Service Engine sends thé& RSO
message to invoke the remote web services. Thisefrark
works with the computing resources using Grid prots,
software components using middleware, and web cEsvi
components. Thus we think it covers all the resesinceeded
for online experiments. As Grid Services will mengih Web
Services in the future, we believe that the twodotayers in
Figure 2 will, at some point, be united into ongela

] Business Layer
Computing resources
w laner! | Network connections
laner/
HTTPS |N B T Devices
T rE]
) El|s R
Clients R? E
N R N Middleware
E Devices
El|v g4 | Jini service
T |E
R App Server]
Seryice Web se_rvice Web Serwce
Objects engine WSDL

o LAN |
] i i
Instruments .
Interconnects Sun Solaris RTLab
PXI, VXI, RS232, Clusters Qnx real time
HPC System

TCP/IP

Fig2. Architecture of the online experiment system

DESIGN AN INSTRUMENT WEB SERVICE

An instrument service is a basic service in ourliagpon. In

this section, we discuss how to wrap an instruneot a web
service. Here we only consider an instrument senas a
remote operation to invoke. We may need to use @oid
process the data generated by the instrument; rewthat is
beyond the scope of this paper. To design an imsnt web
service, we are concerned with the three folloviasges:

° Design the GUI: an instrument has its individualized panel. In
the Lornet project, we studied how to display ttemed as a
java distributed application [12]. DMM is the xmtiema to
define the syntax of an instrument panel. An xtel iompliant
to the DMM is a description of the panel. In [12je xml file is
parsed by JAXB, and its components are mappedviA&VT
components. The DMM schema is defined in such athatyit
is a straightforward 1-1 mapping between the pabgicts and
java AWT objects. In [12], the system is implemehtssing
Jini technology. The xml is downloaded from the iJin

registration server and displayed on client sideaadava
application. The user can operate the remote olfjent the
GUI interface.

In this paper, our online experiment system is Wwabed. We
want zero installation at the client side. The useeds only a
browser to access the online laboratory any tinteaarywhere.
We inherited part of the existing work. Insteadusing AWT

classes, we map the panel objects to JSP objelts JAXB

binding is inherited. The GUI generation princigedisplayed
in Figure 3 using the Agilent 33401A as an example.

XML file (DMM_AGILENT_34401A_GUI.xml) XSD file (DMM_GUl.xsd)

validates From IVI specifications
(Interchangeable Virtual
Instrument)
uses JAXB Java architecture for XML Binding
/ Parameters.
‘. Agilent Technologies || Range 3A =
124.57 A AC Resolution |6 1/2 digits 7|
analyze — Powerline [50Fz 5]
Ve VA > AutoRange [V
Offset/Null
enerates A A Hz | |Vee o
[savaservet | niowa
/. L2 | .2 | conv) | riker 2

JPanel

JButton
JCheckBox
JTextPane
JComboBox

<table ...>

<input type="button” ...>
<input type=“checkbox” ...>
<input type="text" ...>
<select ...><option>...

GUIBuilder

Fig3. The principle to display GUI interface
using JSP objects

Design the WSDL for the instrument services:

The invocation of an instrument service is simt@many other
web services. WSDL is a description of the remgierations
(remote functions) and the arguments of the op@rat{type of
the arguments and the sequential input order).

We use the multimeter Agilent 33401A as the examfpie
Table 1, we show how the remote operagetfunctionsresult
for Agilent 33401A is defined. It is am-out type service,
which means it receives the input arguments emlzbddea
request SOAP message and returns the results @sponse

arguments, andetfunctionsResponse requires one float typed
argument. We defined other operations, suckeffoltValue,
sstOhmValue, getVoltRange, getOhmRange for this
instrument. These operation names are actuallynieéhod
names of the remote service objects.

The advanced requirements for instrument services:

While the main purpose for most existing web sawics to
provide information, the instrument web servicevolxe

operating the physical devices in real time. Imgrogesign of
the web services can cause damage to the instriandrareate
false measurement and control, causing the onkperanent
to fail. Therefore, we present the special requaeis for the
instrument web services and partially present thatisns.

1. Stateful service: the service tracks the user information. It
records the operations from one user and contisthe user
can use the service. The states of service for ex ase
controlled. We use an application server to achigsateful
service. The application server provides functimueh as
persistence and transaction.

2. Performance issues. Generally speaking, web service is
slower than middleware for two main reasons. It hawre
transport layers than middleware; the overheadsfguSOAP,
e.g. composing SOAP delays transport, and the peylof
SOAP messages are much bigger than necessary afdmey
of networking can cause the user to lose contrahefdevice
and even cause damage. We are working on benchrgasib
services for online experiment applications. We twaranswer
two questions: 1) what are the metrics of QoS & teb
services for this kind of application, and; 2) hde we adapt
the instrument service to meet the QoS for diffemetwork
conditions? Some technologies are available tonopd the
performance. For example, we can use Abstract Synta
Notation (ASN) to save the payload, or we can kéep
connection open to save transport time.

3. Server dde reliability mechanisms. For an online

SOAP message. The bottom part of Table 1 defines th €xperiment system built on web services, the sigealerator,

<!--define the request message -->

<wsdl:message name="getfunctionsresultRequest">
<wsdl:part name="in0" type="xsd:float" />
<wsdl:part name="in1" type="xsd:float" />

</wsdl:message>

<!--define the response message -->
<wsdl:message name="getfunctionsresultResponse">
<wsdl:part name="getfunctionsresultReturn"
type="xsd:float" />
</wsdl:message>

<!--define the operation -->

<wsdl:operation name="getfunctionsresult">
<wsdl:input name="getfunctionsresultRequest">
</wsdl:input>
<wsdl:output name="getfunctionsresultResponse">
</wsdl:output>

</wsdl:operation>

Table 1: the snippets of WSDL for Agilent 33401A

operation.The two messages gétfunctionsresultRequest and
getfunctionsresultResponse are defined at the beginning of the
WSDL. getfunctionsRegquest requires two float typed

the measurement instrument and the testing dewiegsnot be

in a same physical location. The latency of sigreah cause
faulty measurement, and breaking the connectionslezd to
physical damageWhen the experiment is about controlling a
remote device, the control strategy has to conglienon-real
time effects. We think a service has to have tHeowving
mechanism to improve its reliability:

a. time out mechanismWhen the user does not give further
instruction, the service cuts the connection.

b. attach time stamp when transferring signahe time stamp
marks the time point of the event. The measureramhappen
after the event. The time stamp tells the true tifinen event.

c. trend predication for some critical variablesThe
predication can be used to shut down the devicenwhe
variables go out of norm values, or it can be useddjust the
control strategies.

d. proactively response to exceptiofihiese exceptions can be
both hardware or software exceptions.

We need to look into the specific experiments teigle these
mechanisms.

DESIGN THE PLANNER MODULE FOR SERVICE
COMPOSITION

Composing Web services rather than accessing & segvice
is essential and offers more benefits to users. goasition
addresses the situation of a user's request thatotabe
satisfied by available component services, wheaeasmposite
service obtained by combining the available sesvitgght be
used for satisfying the request [13]. For onlinpeziments, we
can select the instruments and devices scattered the
Internet for one experiment, or we can select tkgeements
from different locations for one course.

Web service composition involves service discovenyd
service integration. Service discovery normallyaigey word
search process on UDDI. We can get detailed degmrip of
the services in the UDDI registry. Service inteignatis to
select the best composition from the potential qEag and
determine the interaction and sequences between fbe a
new service.

In the rest of this section, we present our sofutid service
composition using artificial intelligence (Al) plaimg [14].

Al planning is fundamentally based on search teqples in the
problem space. The classic Al planning includesvémd chain
search, backward chain search and many other iesrifbm
the two basic techniques. The result of an Al panis the
ground formula that describes the sequential/mraliders of

the activities that satisfall the constraints. There are many

sound and complete Al planners. The complexity df A
planning is NP-complete.

The web service composition problem can be modedlsd
planning problem.

Definition 1 Let L={py,..., p.}be a finite set of proposition
symbols. A planning domain on L is a restricted state-
transition system = {A,S, v}

e A = {a,&,...a} is the set of available actions
(services for web services composition);

e An action ais a triple a&(precond(g, effectys),
effects(a)). The set precondfais the preconditions
of a and the sets effedts), effecté(a) are called the
effects of g

e S ={s,%....5} is the set of states (the states in
problem space). An action & applicable to;sif s
satisfies the precondja

e yis a transition function which defines the effeofs
applying a to §: Yy(s.a)=(s-effectya))Ueffect(a)),
andy(s,a)dS.

Definition 2 A planning problem is a triple P=E, s, 9),
where:

e 5 0S is the initial sate

e gOL is a set of propositions called goal propositions

that give the requirements that a state must gatisf

order to be a goal state. The set of goal states i

defined as follows: &{sOS| g1s}.

S

We can describe the instrument selection problemthiz
following way:

Definition 3 A plan 1tis a sequence of actioms= (g, ...
which is a solution for P if(g y(so, T9).

Y

The planning problem gives the solution to deteamthe
sequence order of the services to satisfy the repeints of the
new service. However, web services composition itsaewn

characteristics which are out of the definitiorptenning. First,
only the most optimal plan will become the new cosghl
service. Though a planner can provide completetisol it is
just a distraction. Domain-based utility functionillwbe

designed to evaluate the plans and select the best
Additionally, the problem space is not finite. Fo@ample, it is
not possible to extract all the available time slfadr all the
instruments. We can only get the availability imiation by
sending a SOAP query to the service. Only parthefdata is
exposed to us. Second, the problem space is nite. fiRor
example, the schedule of an instrument may be neshby a
booking system. We do not own the database of dukibg

system. We can only use SOAP queries to get thiahildy

information on a certain time interval. Thus, thbug is

possible to explore the whole problem space, praltyi the
problem space is partially exposed.

We propose arincremental planning process to solve the
above problems. We have an Al planner as the cbrtheo
composition module. An evolution algorithm, suchGenetic
Algorithm (GA), is used to select the best pland goide the
incremental planning process. The evolution an rityo

provides the optimization possibility and explotee problem
space incrementally. When the algorithm is used Btenario
in which multiple partners are involved, the partnean
contribute to the direction of search at each tfrevolution.

This was first presented by [15].

The incremental planning process works in this was select
n web services as the inputs of the planner. Thesehar first
generation chromosomes for the GA. They are son@pm
the search space. The planner will generate aBiplesplans.
A domain-based utility function is designed to ewdé the
plans. We evaluate the plans in two dimensionsctdst of the
service and the preferences of the time slots. bestm plans
will be kept, all others will be abandoned. The plans
correspond ta’ web services. Tha' web services will pass
the operations of GA, i.e. the crossover and manatmhese
operations help the optimization to jump out ofdboptimal
points. One possible effect of crossover and nmaas that it
varies the time slot for a web service. Then, wedn® query
the web service again to get the availability infation. The
new n web services are given to the planner again. Téve n
loop starts. Normally we can expect that after gatiens, the
process is converged to some global optimal poirtiat is the
final plan we want.

A simple version of the web service compositionpem is
that the process of an experiment is fixed. Thaameewe do
not need to determine the sequence of activitideenTthe
composition problem is simplified as a pure optetian
problem. We can just unplug the planner from trexess.

We will present the incremental planning in a safmpaper.

Context mediation of Web Services composition

Because Web services originate from different piexs, thus
are heterogeneous, achieving the semantic composifiWweb
services consists of resolving the semantic hetareity
conflicts among Web services. These semantic aisifirise
when (i) the same concept has different data strest (i) the
same concept has different meanings in differenb \8&rvices,
(iii) different values have the same meaning, arn) (ihe
meaning of a value change from one context (apjicato
another.

In Web Services composition with semantic data amge
(Figure 4), these Web Services interfaces are leggliavith a
contextual description. Its objective is to asstc@ontext with
input and output parameters. Context is any inféionahat is
relevant to the interactions between a user anghaimonment.
Therefore, the values exchanged between Web serameenot
simple values; instead they are semantic values, (ho
ambiguities in their meaning).

The context information that is associated with eb/gervice
supports the composition of a Web service process t
automatically whether data conversion is neededis Th
conversion is done by an active component calledtect
mediator in [16]. The conversion functions are wedi outside
the Web services and can be shared by all Webcestvi

AN

hared ontolog

Contextual
description

<o]

wsdl
Value V V\A

-

WsS1

Contextual
description

wsdl

WsS1

WS: Web Service
CM: Context Mediatc

Fig4. Web Services Composition with
context mediatior

SOME SNAPSHOTS OF THE DEMO SYSTEM

We built a demo system to verify and illustrate fdasibility of
our ideas. The demo system shows how a user carecbto
the online lab using a web browser and operaténdieuments
wrapped as web services. The other sophisticaterés as
discussed in this paper are not implemented in demo
system. Web server layer uses Apache Tomcat. dtgsrvlet
and JSP container. The GUI is implemented by J8Fsarviet.
The SOAP engine is an Apache AXIS engine. The Isealice
object is implemented by servlet. BPWS4J is the IBMEL
server. It can manage the experiment process andléhshe
remote service invocation.

Figure 5 shows the principle of the demo systeme Tker
connects to the online lab server through a webvgeo
He/she meets the login page. After login, the enlab system
displays a list of available instruments. Since soaf the
instruments are remote web services, the onlineslagtem
actually “downloads” an xml file of remote instruntelists
(labinstruments.xml in Figure 5). The online lalsteyn parses
the xml and lists the instruments to the user. Udex can select
an instrument from web page (jsp pages). For exantipé user
selects a multimeter Agilent 34401A. The online Rlstem
will go to the web services of this instrument, Waddoad” the
xml for the description of its panel (Agilent34401@ui.xml in
Figure 5). The xml is parsed, and the jsp pagedisplaying
the panel is dynamically generated by the GUI tauild’hen
the user can operate the instrument via the GUs. ddmmands
of the operations are sent to the instrument manablee
instrument manager encodes the command into SOAP
messages according to the WSDL of the instrumenticsg
and sends the SOAP to the instrument service. f$teument
manager receives the SOAP response messages andeslec
the returned data. The instrument manager calls Gh#
builder to update the GUI so that the received dzta be
displayed on the panel.

User

3
SE=

F ConfigaSubmit

GUIBuilder ‘ InstrumentManager ‘

JAXB

"Agilent34401A Instrument
GUI (xml)

Online Lab Server

=_m

Java Serviet
[selectionsuilder | [

JAXB

lablnstruments
(xml)

Service
Interface

and display instrument panel

CONCLUSIONS

Our system framework can be evaluated using thewiig
characteristics:

Interoperability : Web Service is language-independent and
platform-independent.

Scalability: may not be an issue for online experiment, since
the service can only accept one user.

Portability : java-based, portable for UNIX, Linux, and
Windows.

Affordability : open source, affordable for e-learning
applications, open source does not mean low qualigny of
the open source products we used are among the best
Accessibility: from any web browser

In this paper, we discussed some advanced feafuresline
experiment web services. That is the direction frictv we are
currently working.

REFERENCES

1. Chung, J.Y., K.J. Lin, and R.G. Mathieu. Web Sessic
computing. Advancing Software InteroperabilityEEE
Computey 36(10), Octobre 2003.

Curbera, F., R. Khalaf, N. Mukhi, S. Tai, and S.
Weerawarana. The next step in Web Services.
Communications of the AGCM6(10), October 2003.

SOAP Specification, http://www.w3.org/TR/soap12ipar
WSDL Specification, http://www.w3.org/TR/wsdl
UDDI homepage, http://uddi.org/pubs/uddi_v3.htm

Foster, 1., C. Kesselman, J. M. Nick, S. Tueckege Th
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,
http://www.globus.org/research/papers/ogsa.pdf.

o 0k w

. Foster, I., C. Kesselman, S. Tuecke, The Anatomthef
Grid: Enabling Scalable Virtual Organizations,
http://www.globus.org/research/papers/atatomy.pdf

Foster, I. and Kesselman, C. (ed$he Grid: Blueprint for
a New Computing Infrastructurdlorgan Kaufmann, 1999.

OASIS, OASIS Web Service Resource Framework,
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf

10. Paquette, G., Meta-knowledge Representatiohdarning
Scenarios Engineeringgroceedings of AIEd'99.e Mans,
France, July 99.

11. Andrews, T., Curbera. Fet al, Specification : Business
Process Execution Language for Web Services Verkibn
http://lwww-128.ibm.com/developerworks/library/wselp

12. Fattouh, B. and H. H. Saliah, Model for a Dirited
Telelaboratory Interface GeneratdProceedings of Int.
Conf. On Engineering Education and Resear@rech
Republic, June 27-30, 2004.

13. Berardi, D. D. Calvanesse, G. De Giacomo, Mzirni
and M. Marcella. A foundational Vision for e-sem$cIn
Proc. Of the Workshop on Web services, e-Busiraess,
the semantic web (WES'2003)eld in conjunction with
CAISE 2003, Austria, 2003.

14. Ghallab, M., D. Nau, and P. Traversphutomated
Planning: theory and practi¢eElsevier, 2004.

15. Yuhong Yan, etc. "A Genetic Algorithm for Cadofl
Resolution in Concurrent Production DevelopmelEEE
Int. Conf. on Man System and CybernetiOslando, USA,
Oct. 1997.

16. Sciore, E., M. Siegel, and A. Rosenthal: UsBemantic
Values to Facilitate Interoperability Among Heteeogous
Information Systems.ACM Transactions on Database
System49 (2), 1994.

https://www.researchgate.net/publication/274065074

